Why Use This Data Source In Your Models?
PCE: Excluding Food & Energy - Chain Type Price Index - Not Seas Adj
Source:
U.S. Bureau of Economic Analysis
Release:
Personal Income and Outlays
Units:
Index 2012 = 100, Not Seasonally Adjusted
Frequency:
Annual
Available Through:
12/31/2022
Suggested Treatment:
The data shows auto correlation and seasonality. The data should be differenced and seasonally adjusted.
Grain Transformation:
Data is unable to be distributed by time or geography. The roll up method used is Weighted Average.
Data shows auto correlation indicating a need for differencing
The ACF indicates 1 order differencing is appropriate.
Following first order differencing, no further differencing is required based on the differenced ACF at lag one of -0.07
The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, KPSS Trend = 0.15 p-value = 0.05 indicates that the data is not stationary.
The Shapiro-Wilk test returned W = 0.97 with a p-value =0.90 indicating the data follows a normal distribution.
A skewness score of 0.31 indicates the data are fairly symmetrical.
Hartigan's dip test score of 0.06 with a p-value of 0.99 inidcates the data is unimodal
Auto Correlation Function
Auto Correlation Function After Differencing
Partial Auto Correlation Function
Data Notes:
2020 data is not currently available.
Citation:
U.S. Bureau of Economic Analysis, Personal consumption expenditures excluding food and energy (chain-type price index) [DPCCRG3A086NBEA], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/DPCCRG3A086NBEA, December 15, 2019.
Use our platform to aggregate, normalize, and profile open source and premium control data. Spend less time finding and wrangling data, and more time building efficient and feature-rich machine learning data pipelines.
Instantly apply industry-standard
data science treatments and transformations, including (but not limited to) Differencing, Lead/Lag, Box Cox. Easily manipulate data across different time and geographic grains.
Our Patent Pending iterative testing engine allows you to upload your target variable, and the platform will test for possible statistical relationships across all available data sources. Saving you time and removing analyst bias.
Easily integrate your Ready Signal data to the data science platform of your choice. Connect directly to Ready Signal through our API or using one of our pre-built data connectors or download directly in Excel or CSV format.