Why Use This Data Source In Your Models?
Household debt service payments as a percent of disposable personal income describes the size of typical debt payments in the US as well as typical disposibal income. This can describe consumer behavior & overall economic health.
Hhld Debt Service Payments; % of Disposable Income
Source:
U.S. Census Bureau
Release:
Household Finances
Units:
Percent of Disposable Personal Income, Seasonally Adjusted
Frequency:
Quarterly
Available Through:
12/31/2022
Suggested Treatment:
The data shows auto correlation and a non-normal distribution. The data should be differenced. While the Order Norm transformation, provides the best normality, the Exponential variable will also perform well.
Grain Transformation:
Data is unable to be distributed by time or geography. The roll up method used is Weighted Average.
Data shows auto correlation indicating a need for differencing
The ACF indicates 1 order differencing is appropriate.
Following first order differencing, no further differencing is required based on the differenced ACF at lag one of -0.39
The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, KPSS Trend = 0.09 p-value = 0.10 indicates that the data is stationary.
The Shapiro-Wilk test returned W = 0.82 with a p-value =0.00 indicating the data does not follow a normal distribution.
A skewness score of -1.78 indicates the data are substantially skewed.
Hartigan's dip test score of 0.03 with a p-value of 0.99 inidcates the data is unimodal
Auto Correlation Function
Auto Correlation Function After Differencing
Partial Auto Correlation Function
Seasonal Impact
Seasonal and Trend Decompostion
Citation:
Board of Governors of the Federal Reserve System (US), Household Debt Service Payments as a Percent of Disposable Personal Income [TDSP], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/TDSP, December 13, 2019.
Use our platform to aggregate, normalize, and profile open source and premium control data. Spend less time finding and wrangling data, and more time building efficient and feature-rich machine learning data pipelines.
Instantly apply industry-standard
data science treatments and transformations, including (but not limited to) Differencing, Lead/Lag, Box Cox. Easily manipulate data across different time and geographic grains.
Our Patent Pending iterative testing engine allows you to upload your target variable, and the platform will test for possible statistical relationships across all available data sources. Saving you time and removing analyst bias.
Easily integrate your Ready Signal data to the data science platform of your choice. Connect directly to Ready Signal through our API or using one of our pre-built data connectors or download directly in Excel or CSV format.